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Abstract
We assess the literature on innovation and upscaling for negative emissions technologies (NETs)
using a systematic and reproducible literature coding procedure. To structure our review, we employ
the framework of sequential stages in the innovation process, with which we code each NETs article in
innovation space. We find that while there is a growing body of innovation literature on NETs, 59%
of the articles are focused on the earliest stages of the innovation process, ‘research and development’
(R&D). The subsequent stages of innovation are also represented in the literature, but at much lower
levels of activity than R&D. Distinguishing between innovation stages that are related to the supply of
the technology (R&D, demonstrations, scale up) and demand for the technology (demand pull, niche
markets, public acceptance), we find an overwhelming emphasis (83%) on the supply side. BECCS
articles have an above average share of demand-side articles while direct air carbon capture and
storage has a very low share. Innovation in NETs has much to learn from successfully diffused
technologies; appealing to heterogeneous users, managing policy risk, as well as understanding and
addressing public concerns are all crucial yet not well represented in the extant literature. Results from
integrated assessment models show that while NETs play a key role in the second half of the 21st
century for 1.5 ◦C and 2 ◦C scenarios, the major period of new NETs deployment is between 2030 and
2050. Given that the broader innovation literature consistently finds long time periods involved in
scaling up and deploying novel technologies, there is an urgency to developing NETs that is largely
unappreciated. This challenge is exacerbated by the thousands to millions of actors that potentially
need to adopt these technologies for them to achieve planetary scale. This urgency is reflected neither
in the Paris Agreement nor in most of the literature we review here. If NETs are to be deployed at the
levels required to meet 1.5 ◦C and 2 ◦C targets, then important post-R&D issues will need to be
addressed in the literature, including incentives for early deployment, niche markets, scale-up,
demand, and—particularly if deployment is to be hastened—public acceptance.

1. Introduction

Meeting even moderately ambitious goals to address
climate change could require removing substantial
amounts of greenhouse gases from the atmosphere

at a rate much faster than existing natural removal
processes (Sanderson et al 2016). Several methods of
anthropogenic removal have been proposed, which fall
under the rubric of negative emissions technologies
(NETs). The notion of ‘technology’ here is broad, a
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means to an end (Arthur 2007), encompassing not
only devices or hardware but also soft innovations,
such as management practices and behavior. NETs
thus include industrial processes, such as bioenergy
with carbon capture and sequestration (BECCS), and
direct air carbon capture and storage (DACCS), which
is sometimes referred to simply as ‘direct air capture.’
NETs also include ecosystem management approaches
(Field and Mach 2017, Griscom 2017) such as: soil
carbon sequestration (SCS), biochar, afforestation and
reforestation (AR), blue carbon (BC), enhanced weath-
ering (EW), and ocean fertilization (OF). Methods
to remove greenhouse gases other than CO2 include
chemical decomposition of methane and laser removal
of CFCs; they are typically known as greenhouse gas
removal technologies (GGRs) and are not covered in
this review, but are reviewed elsewhere (Boucher and
Folberth 2010, Stolaroff et al 2012, Ming et al 2017).
We provide a taxonomy for the NETs approaches
reviewed here in Minx et al (2018).

This review is part of a series of three reviews
papers on NETs. The first presents scientometric
trends and provides an overall summary (Minx et al
2018). The second includes an assessment of costs
and potentials of NETs, as well as a summary of the
level of NETs included in climate stabilization sce-
narios such as 1.5 ◦C and 2 ◦C (Fuss et al 2018).
In this paper, we review the extent to which the
NETs literature includes topics related to innovation
and upscaling.

1.1. Demand, supply, and costs of NETs
An up-to-date assessment of the potential rate (in
Gt CO2 yr−1) at which NETs could remove CO2 from
the atmosphere shows that all of these methods—with
the exception of soils— have a high-end potential to
remove multiple, and in cases tens of, Gt CO2 yr−1,
while soils could remove on the order of single-digit
Gt CO2 yr−1, albeit all with wide ranges of uncer-
tainty (Fuss et al 2018). The heterogeneity of NETs,
especially with respect to their limitations, geograph-
ical accessibility, and side effects, strongly imply the
need to think in terms of portfolios of NETs to manage
risk and maximize removal efficacy. The main insight
from the small set of studies that do consider more than
one NET (Chen and Tavoni 2013, Florian et al 2014,
Marcucci et al 2017), is that when deployed jointly,
the total negative emission potential from NETs is
increased while the individual deployment of NETs is
reduced, suggesting that portfolios provide an avenue
to mitigate adverse impacts. An important insight
is that even though integrated assessment model
(IAM) results typically have a large role for NETs
to play in the second half of the 21st-century for
meeting the climate goals of the Paris Agreement,
there is still urgency in developing NETs now due
to the expected lengthy time periods required to
deploy them at the scale of gigatonnes-per-year of
removal.

Fuss et al (2018) also reviews recent cost estimates
of various NETs. These estimates vary considerably
both within and among NETs technology categories.
For example, we see ranges at the low end of sin-
gle digit dollars per ton of removal (e.g. AR and
OF) with high end estimates in the several 100s of
dollars per ton (BECCS, DACCS, and EW). Like
mitigation technologies, only considerable effort will
render NETs technically as well as economically fea-
sible. Importantly, the costs of NETs vary not only
quantitatively but also qualitatively; whereas the costs
of DACCS include capital equipment purchases and
energy input costs, the costs of SCS relate to the perma-
nence of the carbon in soil, the effects on agricultural
yields, and the adoption behavior of farmers. Deploy-
ing NETs at a meaningful scale will require them to be
affordable, including all costs, and socially acceptable,
in a broad sense.

1.2. Innovation in NETs
The speed at which NETs can be scaled up so that they
are commercially available at affordable costs, deliver
climate benefits and non-climate co-benefits, with rea-
sonably tolerable adverse impacts, will determine their
utility for addressing climate change. Innovation in
NETs and in supporting environments will be cen-
tral to this scale up process, and thus crucial to their
outcomes on the climate and on society. We employ a
broad definition of ‘innovation’ in this review spanning
the full range of the process, from scientific discov-
ery to issues associated with widespread adoption. We
separate the innovationprocess into categories that cor-
respond to a succession of stages. Using a dichotomy
prevalent in the innovation literature (Nemet 2009, Di
Stefano et al 2012), we find it useful to group these
stages into two categories: (1) those related to the
supply of innovation in a technology, e.g. including
scientific research, and (2) those related to the demand
for innovation in that technology, e.g. public accep-
tance. Supply side activities involving improving the
costs and performance of technology while demand
side activities involve the markets in which NETs com-
pete, who wants them, how they use them, and the
extent to which the broader public accepts them.

The past two decades have seen a steady increase in
publications on NETs. While this body of work repre-
sents a small portion of the broader climate literature,
it is growing faster–particularly more recently (Minx
et al 2017b). In a companion piece to this review,
Minx et al (2018) conduct a scientometric assess-
ment of the extant literature on NETs and find (i)
steady growth in the literature across different tech-
nologies with notable exceptions of ocean acidification
and enhanced weathering; (ii) a development of dis-
tinct scientific discourses for all major technologies
that in turn broadly cluster into land-based and ocean-
based approaches as well as those involving geological
storage; and (iii) the lack of a distinct cluster with
studies of NETs portfolios.
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1.3. This review: literature on innovation and scale
up in NETs
As rapid and sustained emissions reductions continue
to be forestalled, societies face an increasing depen-
dence on NETs to achieve ambitious climate goals. The
study highlights that while a risk management perspec-
tive requires limiting the growing importance of NETs
in climate policy by ratcheting up short-term ambi-
tions, these efforts will need to be accompanied by a
focus on innovation and scale-up in order to realize
required levels of carbon removal in the 21st century for
meeting the international climate goals. This motivates
our review and frames the following research question:
what does the literature on NETs say about innovation
and how to achieve up-scaling?

This review starts with the body of literature identi-
fied via the scientometric analysis conducted in (Minx
et al 2018). We identified 2134 articles that fit a def-
inition of NETs, were published in the peer-reviewed
literature, and are cataloged by the Web of Science
and Scopus between 1970 and mid-2017. We assess
how many of these articles address the process of
innovation, the stages associated with: creating new
technical knowledge, transforming that knowledge into
commercial products, diffusing them widely in soci-
ety, and dealing with societal issues resulting from
their use. We refer to this set of innovation processes
as ‘innovation and upscaling.’ We choose the focus
on increasing scale because of the inherently large
scale at which NETs need to be deployed in order to
have a material impact on the Earth’s climate. Even
in portfolio approaches, in which multiple NETs are
deployed, several gigatonnes of removal for each indi-
vidual technology are required. We thus categorize
each article as covering topics that relate to one or
more categories of the innovation process. We pro-
vide a descriptive analysis of the trends in publications
acrossbothNETs technologycategories and innovation
stages. We use the articles we identified to summarize
some of the key insights that have emerged so far on
innovation in NETs. An overview of the entire search
selection procedure is provided in Minx et al (2018).

We first look (section 2) at general insights from
the innovation literature and the framework it pro-
vides for evaluating NETs. In section 3, we develop
scientometric estimates of the trends and foci of activ-
ity in academic publishing on NETs. In section 4, we
substantively review the key articles from the literature
on innovation in NETs. We provide summary insights
and conclusions from this review in section 5.

2. Insights from the innovation literature

2.1. Definitions of innovation
Innovation is central to many aspects of address-
ing climate change. Innovation includes performance
improvements in mitigation technologies, such as in
the efficiency of end use devices like electric motors; it

also encompasses efforts at adaptation, such as drought
resistant crops; and it can also involve new business
models, such as providing access to capital for low-
carbon technologies in credit-constrained economies.
The promise of innovation is that it can make efforts
to address climate change more effective and more
affordable (Popp 2010).

Depending on the disciplinary venue, innovation is
defined in different ways: the general notion of innova-
tion is sometimes referred to as ‘technological change,’
originally defined as ‘new combinations of productive
means’ (Schumpeter 1934). More specifically in the
context of climate change, a useful definition of tech-
nological change is: ‘a process typically involving stages
of invention, innovation, and diffusion, whereby users
can produce more or better outputs from the same
amount of input.’ (Nemet 2013). While this definition
carries with it the framework specific to the discipline of
Economics from which it originates, it remains apro-
pos for NETs. One can think of innovation in NETs
as generating better outputs, such as more carbon
removed, fewer adverse side effects, and more soci-
etal acceptance. Similarly, one can think of innovation
as reducing the amount of capital, labor, land, water,
or energy required as inputs. More succinctly, inno-
vation can be reduced to performance improvements
and cost reductions (Funk 2015), where performance
can encompass a broad set of characteristics, not lim-
ited to efficiency, but extending to aspects such as
public acceptance (Fri and Savitz 2014).

2.2. Upscaling
An important consideration in all of these definitions
of innovation is the speed at which innovation occurs.
For climate change and NETs in particular, the rate
of innovation is essential (Bromley 2016). Because we
are ultimately concerned with NETs removing giga-
tonnes of CO2 per year, the notion of ‘up-scaling’
provides a useful focus within the innovation pro-
cess. For example, the most recent review of CO2
removal in 1.5 ◦C IAM scenarios found a median
rate of 15 Gt CO2 yr−1 by 2100, with a range of 3–29
(Rogelj et al 2018). The most specific meaning of
upscaling is the increase in unit size (e.g. a power plant)
to take advantage of scale economies, i.e. that costs rise
at less than the rise in output (Wilson 2012). The term
is also used in a more general sense when discussing
planetary interventions in the climate system. In that
case, the focus is not on scaling up a unit, but on scaling
up a technological system.

In the case of NETs, this process might involve
up-scaling to thousands of CCS plants (Herzog 2011,
Nemet et al 2015, Peters et al 2017), millions of
farms (Lal 2004, Woolf et al 2017), or teragrams of
iron added to the ocean (Boyd and Bressac 2016,
Hauck et al 2016). One way to consider the mag-
nitudes of scale up required for NETs is to look at
the deployments estimated in IAMs under various
temperature targets. In figure 1 we display estimates of
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Figure 1. Annual deployment of additional BECCS removal capacity 2030–2050 under various temperature targets, scenarios, and
IAMs. The upscaling metric is computed by taking the difference of gross negative emissions in 2050 and 2030 and dividing it by
20 years. Boxplots provide information about the range between the minimum and maximum values (vertical black solid line), the
range between the 15th and 85th percentiles (blue-shaded rectangle), the median (horizontal black thick line) and the mean (white
point). Basic descriptive statistics are provided below the plot for each climate target: the number of model runs (observations), the
number of model versions and the number of scenarios.

the new BECCS9 required annually on average between
2030 and 2050 under various scenarios and IAMs that
are consistent with three temperature targets (1.5 ◦C,
2 ◦C, 3 ◦C), and the likelihoods of meeting them. Note
that ‘likely’ is a 66% chance of avoiding temperature
overshoot over the 21st century and ‘medium’ is a
50% chance. The 1.5 scenarios feature a different like-
lihood which corresponds to a 50% chance of keeping
warming below 1.5 ◦C in 2100 (see Box in Fuss et al
(2018) for more explanation). Additional information
on the costs of BECCS, its geographical distribution
and its role in the mitigation portfolio is available
in the supporting information (SI) (section A.4).

Annual deployment of BECCS increases with more
ambitious temperature targets but spans a consider-
able range within each target, more than an order
of magnitude. It is striking that for even the least
stringent targets (likely 3 ◦C), the median deployment
rate involves adding 150 Mt CO2 yr−1 of new removal
capacity each year between 2030 and 2050. This is,
because NETs are deployed both because they are bio-
physically required and because they are economically
attractiveonce carbonprices are sufficiently high (Minx
et al 2017b, Fuss et al 2018). To put these numbers
in perspective, the first large scale BECCS project, in
Decatur, IL USA, will remove about 1 Mt CO2 yr−1

once in full operation.Worldwide, nootheroperational
projects exceed 0.3 Mt CO2 yr−1. Only one project in
planning exceeds 1 Mt CO2 yr−1. So, these scenarios
involve bringing online hundreds of new plants of
Decatur-scale each year between 2030 and 2050. To

9 BECCS is the only technology for which gross negative emis-
sion data are available (for afforestation, only net land-use emission
changes are reported).

further put these results in context, scaling up 1Mt
of a specific NET in 2020 to 1Gt in 2050, average
deployment growth rates of 26% must be sustained
for 30 years. Such a scale of growth had been observed
for other technologies before, in particular solar PV
(Creutzig et al 2017), but is nonetheless extremely
challenging.

To see what factors deployment rates are sensitive
to, besides target stringency, figure 2 shows deployment
rates across four different assumptions. The lowest
deployment, and lowest uncertainty, occurs under the
assumption that bioenergy is constrained (‘limited
bioenergy’) or unavailable (‘no CCS/BECCS’), e.g.
due to high social opposition to land use impact
such as food prices. We note that the NET being
modeled here is BECCS so it is among the most
sensitive to land use constraints. At about the same
central tendency, but with much lower confidence,
the ‘low energy intensity’ scenario includes some very
low BECCS deployment outcomes, as well as some
moderate ones. The two highest scenarios are ‘full
portfolio’ and a scenario in which global mitigation is
delayed until 2030. The latter involves some very high
deployment possibilities for BECCS and none below
150 Mt CO2 yr−1 of new capacity annually.

The historical evidence consistently finds that inno-
vations can take decades to be scaled up (Wilson
2012) and widely adopted (Grubler et al 2016), even
if examples of rapid transitions exist (Sovacool 2016).
Given the severe constraints imposed by the global car-
bon budget (Rogelj et al 2016, van Soest et al 2017),
the speed at which NETs can be scaled up to make
a favorable planetary scale impact is a paramount
issue (Fuss et al 2016). But the innovation literature
makes clear that there are risks involved even if this
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Figure 2. Annual deployment of additional BECCS removal capacity 2030–2050 under various assumptions, scenarios, and IAMs.
The upscaling metric is computed by taking the difference of gross negative emissions in 2050 and 2030 and dividing it by 20 years.
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between the 15th and 85th percentiles (blue-shaded rectangle), the median (horizontal black thick line) and the mean (white point).
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of model versions and the number of scenarios.
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Figure 3. Stages of innovation. Arrows indicate flows of knowledge.

scale up successfully achieves its required rate (Buck
2016). Sustained demand for the technology’s benefits
as well as public acceptance of its risks and side effects
will also condition its overall effectiveness.

2.3. Stages of innovation
A basic framework we take from the literature on
innovation is that it can be described as occurring
in a progression of stages (figure 3). Sources useful
for describing and delineating these stages include:
Grubler (1998), Weyant (2011), Gallagher et al (2012),
Nemet (2013), Fri and Savitz (2014), Grubler and Wil-
son (2014) and more recently Anadon et al (2016).
The stages used in these articles use varied termi-
nology and levels of specificity. The use of successive
stages is often critiqued as a simplistic or linear model
(Godin 2005) that abstracts from important features,
such as networks of actors or innovation systems (Geels
2004, Hekkert et al 2007). Some of these critiques
address a strawman version; for example, a consis-
tent insight from work using the notion of stages is
that knowledge flowing between stages does not always

flow in one direction, rather feedbacks from later stages
to earlier ones are important; see dashed arrows in
figure 3 for examples. Still, the notion that innova-
tion includes a progression from early stages to later
ones, that there is an essential sequence to them,
remains relevant and useful (Balconi et al 2010). The
literature is also consistent in describing that the mech-
anisms at work, capital required, level of risk, and
actors involved are distinct across stages. With this
review’s goal of assessing the innovation-related lit-
erature, we adopt innovation stages as a framework
for assessing the locus of publication output in NETs.

Work from the innovations literature makes the
case that this innovation lifecycle sits in a context. Net-
works of actors influence the process (Hekkert et al
2007, Bergek et al 2008). The emergence of a new
technology to replace others, a technological transition,
involves institutions, financing mechanisms and niche
formation (Rotmans et al 2001, Geels 2002, Jacobsson
and Jacobsson 2014). This perspective is particularly
important for NETs in that, for example, land-based
NETs have the largest potential in the institutionally
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weakest regions of the world (Fuss et al 2018). While
we acknowledge the importance of these contextual
factors in accurately describing the innovation process,
for the purposes of this review we adopt a stylized
version of this context by focusing on the distinc-
tion between supply and demand drivers affecting the
direction and speed of the process. ‘Technology-push’
drivers reduce the costs of innovation, e.g. throughedu-
cation and research. ‘Demand-pull’ drivers increase the
pay-offs to innovation, e.g. by increasing the demand
for new technologies in the market place (Nemet 2009).
In figure 3 we simply refer to supply and demand
side factors. We also focus on knowledge (repre-
sented by arrows), the most fundamental part of the
innovation process (Lundvall 1998).

For NETs, as with any technology, the ultimate
measure of success for a particular technology is adop-
tion. Adoption of a technology is a function of its
relative advantage—in terms of cost, efficiency, qual-
ity, environmental impact, etc.—and its alignment
with consumer preferences (Rogers 2003, Fouquet
2010). Adoption is far from certain. Many, if not
most innovations, make it through only a few stages
before being abandoned (Scherer et al 2000, Thomke
2003). An inherent aspect of the process is the lack
of ex ante knowledge about which innovations are
likely to be successful (Fleming 2001). The stakes
of this uncertainty are heightened by the robust
research finding of highly skewed payoffs to inno-
vations, implying that there will be many losers,
only a few winners, and large returns for the latter
(Scherer and Harhoff 2000).

We thus employ the stylized framework of the
innovation process depicted in figure 3 to provide a
taxonomy of six stages to characterize the literature on
NETs.

2.3.1. Research and development
R&D involves the discovery and assimilation of new
scientific and technical knowledge (Holdren and Bald-
win 2001). The research part of R&D includes studies
of thermodynamics and computer modeling of NETs
systems. The development part of R&D involves exper-
iments and prototypes to improve the technology.
It can also involve studies of the future impacts
of a technology at scale. In our study, all of the
papers we have collected from the Web of Science
could be considered R&D under this definition. To
enhance clarity, we classify papers with a narrower
definition; papers are classified as R&D if they do
not get classified in one of the other innovation
categories.

Major efforts to increase energy R&D were agreed
upon during COP21 (Mission Innovation 2015). Yet,
the NETs technologies differ in their technological
maturity and the extent to which R&D funding is
the most critical factor in enhancing knowledge about
them. Public R&D is particularly important as there
are many open questions, needs for improvement in

knowledge, for which firms may not have sufficient
incentives (Jones and Williams 1998, Cohen et al2002).
But it is also limited in that there is only so much
that can be accomplished without market feedback.
One important insight is that R&D is effective when
it is maintained even as technologies progress closer
to commercial use, e.g. because new problems develop
in later stages that require new knowledge (Hendry
and Harborne 2011). The notion of ‘formative phases,’
(Wilson 2012, Bento and Wilson 2016), in which the
optimal designs and configurations undergo experi-
mentation, are particularly important and several NETs
appear to be at this stage at present.

2.3.2. Demonstrations
As they emerge from R&D, technologies need to
prove that their performance is adequate and that they
can function reliably in non-laboratory environments.
Even early adopters will be skeptical of technologies at
this stage. Firms need to reduce the risk of technologies
at this stage by building one or more examples. One
problem that emerges, known as knowledge spillovers,
is that competitor firms, or countries, can observe
these demonstrations and learn from them without
having to make the required investments themselves
(Teece 1986). This free-rider problem creates weak
incentive for companies to fund demonstrations (Hart-
ley and Medlock 2017). Furthermore, even though
incentives for private investment are weak, govern-
ments are often hesitant to fund these investments
(Weyant 2011, Zhou et al 2015), in part due to the
scales of the investment required (Lupion and Her-
zog 2013), a mixed track record of success (Anadon
and Nemet 2014), and to some extent due to percep-
tions that they will be ‘picking winners’ (Cohen and
Noll 1991). This problem, known as the technology
‘valley of death’ results in an abundance of promising
technologies that never become tested in commer-
cial markets because they fail to attract sufficient
investment to prove their reliability.

Work assessing the ‘valley of death’ problem for
analogous technologies provide several insights appli-
cable to at least some of the NETs. One is that
demonstration programs should be designed as a port-
folio of projects so that the program is robust to
failure in a single project (Hart 2017). However the
scale of the investments required can require some
prioritization (Watson 2008). A fundamental goal of
demonstrations is to generate knowledge, i.e. to learn
(Reiner 2015); that is a higher priority than produc-
tion, such as how much CO2 is removed. Excess focus
on production in past demonstrations has reduced
much of their social value (Anadon and Nemet 2014).
Similarly, it is possible to learn from technical fail-
ures (Leoncini 2016). A key to learning is making
sure that knowledge generated is codified, main-
tained, and disseminated (Grubler and Nemet 2014),
which is often not the case.
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Figure 4. Effect of carbon pricing on demand for NETs (i.e. BECCS) at three time periods in integrated assessment models.

2.3.3. Scale-up
The process of increasing the unit size of technolo-
gies to commercially-viable scales is non-trivial and
can take considerable time (Wilson 2012). This, asso-
ciated with increasing scale, is a repeated theme in the
literature. It is clear that just because we know we even-
tually need large scale it does not imply we are ready to
do so today. See for example the megawatt scale Ger-
man and US wind turbines in the 1970s that proved to
be dead ends (Gipe 1995). Furthermore, the extent of
the need to integrate NETs into existing infrastructures
affects deployment speed and similarly varies across
NETscategories (Geels 2002). For example, someNETs
will involve access to CO2 pipeline systems (BECCS,
DACCS), others will require extensive mining and
transportation infrastructures (EW, OF, BECCS).

NETs technologies span a wide range of sizes and
thus each will involve quite different scale-up pro-
cesses. In some cases, such as BECCS, the scale up
process involves major increases in unit scale (Nykvist
2013). In other cases, e.g. in DACCS, there may also
be unit scale increases, but the main scale-up chal-
lenge could be in mass manufacturing DACCS units
(Lackner et al 2012). A strategy of iterative upscal-
ing (Nemet et al 2016)—a series of demonstrations in
which later projects learn from earlier ones and adjust
their designs at larger scales—has proven successful,
e.g. with Danish wind turbines (Garud and Karnoe
2003) as well as with PV manufacturing (Powell et al
2015). NETs could benefit from a similar orientation
to scale-up involving a process of starting deployment
early, gradually increasing unit and manufactur-
ing size, and iteratively improving in the migration
to larger scales.

2.3.4. Demand pull
Innovation is affected not only by technology push (e.g.
R&D) but also by the markets in which it competes:
demand pull (Nemet 2009). Learning by doing in the
course of meeting demand can improve the cost and
performance of technologies (Lohwasser and Madlener
2013). Because the climatic benefits of NETs are public
goods, these markets will be highly affected by pol-
icy, which are often uncertain (Brunner et al 2012).

As a result, demand for NETs will be heavily condi-
tioned by policies, including carbon pricing. Indeed, in
IAMs, carbon pricing is the mechanism that triggers
BECCS deployment, with the scale (or demand pull)
determined by the price levels required to achieve a
given temperature goal (Fuss et al 2018). Other analy-
ses have shown required investment in BECCS capacity
on the scale of hundreds of billions of dollars annu-
ally (McCollum et al 2013). In figure 4, using IAM
results from 207 scenarios in 12 models10, we show
the effect that demand for NETs—in the form of a
carbon pricing associated with various temperature
targets—has on deployment of BECCS in 2030, 2050,
and 2100. On the horizontal axis (log scale) one can
see the distribution of carbon prices associated with
each stabilization target. Carbon prices are decreasing
in the stringency of the temperature target (including
the likelihood of achieving it), but with large overlap-
ping ranges. Deployment of BECCS is shown on the
vertical axis (linear scale). Deployment is also decreas-
ing in the target stringency but increasing in the year.
We note a substantial amount of scatter in the data,
due to among other items, assumptions about mitiga-
tion technologies, climate sensitivity, and heterogeneity
in model structure. One insight from this analysis is
that the effect of demand for NETs, in the form of a
temperature target, affects the urgency of NETs deploy-
ment rather than its end-of-century level. Deployment
of BECCS is quite similar across targets in 2030 and in
2100; it diverges most in 2050—noting again the differ-
ent biophysical and economic rationales NETs use can
have (Fuss et al 2018). We note that the NET modeled
in this case is mostly BECCS, which in some models
includes exogenous constraints on upper bounds of
deployment in 2100 and thus may contribute to the
similarity of deployment levels therein.

More generally, other policy mechanisms such as
subsidies for deployment, technology mandates, and
even intellectual property regimes can affect demand

10 Model versions are counted as individual models (i.e. GCAM 3.0,
GCAM 3.1, IMACLIM 1.1, IMAGE 2.4, MERGE (EMF27), MES-
SAGE (v4), POLES (AMPERE), REMIND (1.4), REMIND (1.5),
TIAM-ECN, WITCH (AMPERE), WITCH (LIMITS)).
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for NETs. There may also be co-benefits that NETs
provide that are independent of the value to society
of carbon removal (Hong-Mei et al 2017). For exam-
ple, some ecosystem-oriented NETs provide ecosystem
services such as flood control that create value and
thus additional demand for NETs; AR can provide
co-benefits with respect to local livelihoods and bio-
diversity.

Other insights from the innovation literature
include the importance of expectations (Alkemade
and Suurs 2012). Expected future demand is often
more important than the level of existing demand for
investment. Adoption settings are crucial, for example
appetite for risk in agricultural settings affects demand
for new technology (Chatrchyan et al 2017). Learn-
ing by doing can occur during the adoption process;
improvement continues after the R&D stage (Arrow
1962, Thompson 2012). Moreover, learning by doing
often is distinct and complementary to R&D, not a
substitute for it (Newell 2010, Corradini et al 2014).
This implies that early deployment of NETs may need
to be subsidized, e.g. as an infant industry, in order to
achieve scale, improve carbon removal performance,
and reduce costs over time. Finally, if demand depends
on policies this adds additional risk to adopters in that
the policies can change and thus payoffs can change as
well. Policy credibility is an important issue in climate
policy in general (Nemet et al 2017), and will likely
become even more central to the success of NETs.

2.3.5. Niche markets
Niche markets exist when early adopters have a higher
than average willingness to pay for a technology. An
example would be carbon capture utilization and stor-
age (CCUS), where oil field operators might value
CO2 above the existing carbon price and thus pay
for CO2 for enhanced oil recovery. Even if the cli-
matic benefits of CCUS, or just CCU, are unclear at
best (von der Assen et al 2013), it can enable subse-
quent scale up to more definitively beneficial removal
at much larger levels. Niche markets can be important
to launching risky new technologies (Kivimaa and Kern
2015), especially those whose initial costs are high but
may fall subsequently through learning by doing. They
may provide some temporary insulation from com-
petition, e.g. when the scales of existing competitors
might make them uncompetitive (Kemp et al 1998)
(Raven et al 2016).

Given the issues of policy credibility described
above, niche markets canprovide hedges against uncer-
tain policy. For example, the existence of carbon
utilization markets can render investments in NETs
technologies profitable even if future carbon prices
falls to (or remains at) zero (MacDowell et al 2017).
These benefits seem especially important for NETs
whose value ultimately is determined by governments
finding ways to price the value of the removal of
CO2. An important caveat about niche markets is
that they are generally very small compared to scales

relevant for climate stabilization, in which gigatonnes
are what matter. Niche markets are useful as a way to
get started and possibly hedge in the near term. The
urgency of addressing atmospheric carbon means that
some niches, such as using CO2 to produce fuels, are
only viable for a limited period. There is also a risk that
servingnichesdiverts innovation toward characteristics
that may not be useful for bulk carbon removal. How-
ever, havinganearlymarketwithhighwillingness topay
and low competition has been essential for other tech-
nologies, and given the uncertain policy environment,
is likely to be essential for NETs as well.

2.3.6. Public acceptance
While often treated as a separate issue, public accep-
tance of new technologies is crucial to their widespread
adoption. In one sense, acceptance matters in terms of
technology adoption and depends on whether adopters
see value in the new technology, how much risk they
are willing to accept in adopting it, and whether any
adverse side-effects are worthwhile in comparison to
the benefits. Potential adopters have heterogeneous
preferences about these and other aspects. For example,
early adopters of photovoltaics demonstrated high will-
ingness to pay for the green or low-carbon status of the
technology (Sundt and Rehdanz 2015). Adopters also
have varying degrees of agency in determining whether
they will adopt the technology or not. In the case of
NETs, many of the ecosystem management technolo-
gies, such as soils, biochar, and forestry, involve aspects
of this form of acceptance (Zinda et al 2017).

A broader form of public acceptance has to do with
individuals and communities who do not make the
adoption decision directly (Krause et al 2014, Bidwell
2016). They may influence the decision via democratic
processes, public protests, or other politically-oriented
means. But they do not have direct agency, in decid-
ing whether or not to adopt. Thus, this broader
notion of public acceptance includes social, cultural,
and political concepts, including power. Issues with
public acceptance can also emerge before widespread
deployment, e.g. in anticipation. For example, con-
sider CCS demonstrations in Germany (Braun 2017).
The need to deploy NETs at the gigatonne scale height-
ens the likelihood that public acceptance issues will
emerge and need to be addressed. Deploying any tech
at scale large enough to meaningfully benefit the cli-
mate implies likely side-effects (Grubler 1998), which
may not be positive. These can lead to public accep-
tance issues (Batel et al 2013). Some NETs, such as
soil carbon sequestration, seem more challenged by
the first set of public acceptance issues, while oth-
ers, such as BECCS and DACCS seem more likely to
encounter the second type.

A third and more abstract issue is whether NETs
ought to be pursued as a mitigation strategy in the first
place. Ethical reasoning suggests that the availability of
NETs presupposes deep, immediate, and costly emis-
sions reductions, pushing this task to later generations
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(thus raising moral hazard), and that they raise con-
siderable procedural and distributive justice concerns
(Anderson and Peters 2016, Shue 2017). These issues
may significantly influence the public acceptability of
individual NETs, as well as a NETs strategy in general,
although they are rarely discussed in a public context
(Campbell-Arvai et al (2017) is an exception), nor even
in the climate policy realm (Peters and Geden 2017).
The ethics of NETs are not discussed in this article, but
are reviewed in Minx et al (2018).

3. Scientometrics on innovation in NETs

Our data for the scientometrics part of this review
are the set of 2134 articles identified in Minx et al
(2018). Whereas Minx et al (2018) coded papers by
NETs technology, here we code each of these articles
by stages of the innovation process. As with the tech-
nology categories, each article could also be coded into
multiple innovation categories. Ultimately, we coded
each NETs article as belonging to one or more of the
six categories described above: (1) research and devel-
opment, (2) demonstrations, (3) scale-up, (4) demand
pull, (5) niche markets, and (6) public acceptance.

3.1. Methodology
We began with a set of six innovation stages used
in the literature as described in section 2. We then
established a set of keywords describing each stage as
follows. First, we selected key words and phrases from
the brief description of innovation stages in section 2.1.
To find synonyms and related words, we submitted
this set of words and phrases to Google Scholar and
collected relevant words and phrases from the results.

Second, we selected key words and phrases from
four comprehensive review articles on climate change-
related innovation (Weyant 2011, Anadon 2012,
Gallagher et al 2012, Fri and Savitz 2014). We entered
the text of each article into the free phrase and word
counters provided by writewords.org.uk. The tools
return a frequency count for each word and phrase.
The list includes non-substantive words such as ‘the’ as
well asmanysubstantivewords suchas ‘innovation.’ For
example, it is clear from this search method that words
beginning with the stem ‘invest’ are important because
‘investments’ appears in the (Gallagher et al 2012) arti-
cle 91 times, ‘investment’ appears 30 times, ‘investors’
appears five times, and ‘investing’ and ‘invested’ each
appear twice.

Third, we assigned these words and phrases to
the six innovation stage queries and began sampling
to establish shares of articles that are relevant to our
intended innovation stage categories. Because we man-
ually read every abstract we designed our searches to
err on the side of including irrelevant articles to ensure
that we do not exclude relevant ones. However, after
sampling, our query for stage ‘6. Public Acceptance’
returned very few relevant articles. We thus expanded

the search by adding frequently used words from two
more public acceptance articles (Krause et al 2014, Bid-
well 2016). The supporting information (SI) provides
the actual Boolean strings used in our searches. We
applied this search string to abstracts and titles of the
articles identified in Minx et al (2018).

Finally, we manually read the title and abstract
of each article and coded it as relevant or not for
each innovation stage in which it was identified using
the Boolean string above. Two researchers read each
article. We coded an article as relevant to that inno-
vation stage if either researcher coded it as relevant
(81% were coded the same by each researcher). We
performed the manual coding using a coding rubric
that reflects the characterization of each innovation
stage in section 2.1. We include details on the manual
coding rubric in the SI.

3.2. Results on locus of research emphasis
Our main result from this analysis is that the liter-
ature on NETs is best described as still ‘scientific,’
which in our framework we categorize as ‘research
and development.’ The subsequent stages of the inno-
vation process are represented in this literature, but
at much lower levels of activity. One implication of
this main result is that if NETs are to be deployed
at the levels needed to meet 1.5 ◦C and 2 ◦C tar-
gets, then important post-R&D issues will need to be
addressed—for example including early deployment,
niche markets, scale-up, demand, and public accep-
tance. For the NETs literature to contribute to this
process, it will need to vastly increase its insights on
post-R&D topics.

In table 1 we show the counts of NETs articles
by technology category and innovation stage. In addi-
tion to the NETs technology categories we include
one for ‘synonyms’, which includes cross-cutting men-
tions of NETs, geo-engineering, carbon removal etc
(note that we do not include solar radiation manage-
ment in this review). These counts are made after all
cleaning and removal of irrelevant articles. The R&D
category is distinct in that the search string captures
a large set of articles, over half of all NETs articles.
Articles can be counted in multiple technology cat-
egories as well as in multiple innovation stages. The
totals for rows and columns (‘total positive codes’)
sum to amounts higher than the total number of arti-
cles (‘total distinct articles’). As in paper 1, we see that,
by far, the largest articles counts are for the ecosys-
tem management technologies: SCS and AR. A second
tier includes DACCS, OF, and BECCS. Biochar and
EW are much smaller.

Pooling across NETs technologies, R&D domi-
nates all innovation categories. The next largest counts
are in scale up, demand pull, and public acceptance.
But even these most well-represented innovation stages
include only a minority of the articles. Table 2 shows
that 21% of the articles cover scale-up, 9% demand
pull, and 7% public acceptance. Demonstrations
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Table 1. Counts of NETs articles by technology (rows) and innovation stage (columns).

Supply-side categories Demand-side categories

Technology RD Demos Scaleup Demand Niche Public Total Total
pull markets accept positive codes distinct articles

Afforestation/reforestation 149 9 62 24 1 7 252 197
BECCS 61 7 37 31 5 10 151 106
Biochar 48 1 15 4 1 5 74 58
Direct air capture 92 7 30 8 2 5 144 108
Enhanced weathering 13 1 7 1 – 5 27 19
Ocean alkalinisation 5 – 6 2 – 2 15 10
Ocean fertilisation 94 4 21 5 – 15 139 103
Soil carbon sequestration 183 4 37 11 – 22 257 209
NETs - General 52 6 30 20 5 9 122 75

Total positive codes 697 39 245 106 14 80 1181 885
Total distinct articles 679 29 208 99 10 79

Table 2. Share of NETs articles in each stage (%), as a proportion of all articles (R&D).

Supply-side categories Demand-side categories Toal

Technology RD Demos Scaleup Demand pull Niche markets Public accept Demand side

Afforestation/reforestation 59 4 25 10 0 3 13
BECCS 40 5 25 21 3 7 30
Biochar 65 1 20 5 1 7 14
Direct air capture 64 5 21 6 1 3 10
Enhanced weathering 48 4 26 4 – 19 22
Ocean alkalinisation 33 – 40 13 – 13 27
Ocean fertilisation 68 3 15 4 – 11 14
Soil carbon sequestration 71 2 14 4 – 9 13
NETs - General 43 5 25 16 4 7 28

Total positive codes 59 3 21 9 1 7 17

and niche markets, which the innovation literature
describes as crucial, are addressed in only a small num-
ber of articles across all NETs; only 1% of the articles
refer to niche markets and 3% refer to demonstration
programs.

Table 2 also reveals the disparity between publi-
cations involving the supply side of NETs and those
involving the demand side. The overwhelming share of
work has been on the supply side. When we pool article
counts across the demand side categories and divide
by the total number of innovation codes assigned,
we get an estimate of this supply side focus. For all
NETs, 17% of the codes are on the demand side,
83% involved supply side. Technologies with an above-
average demand side activity are: BECCS (30%) and
enhanced weathering (22%). There are low counts of
demand side discussions for ocean fertilization (14%),
biochar (14%), soils (13%), and direct air capture
(10%). Correspondingly, a typical way in which these
technologies are discussed is that they are ‘deployed’
rather than ‘adopted.’

Lookingat the innovationcategories by technology,
beginning with the supply side: table 2 shows very low
shares of articles on demonstrations. The only tech-
nologies with more than 4% on demonstrations are
BECCS and DACCS. We note that these are two tech-
nologies that are most tightly connected to industrial
processes, so the notion of needing to demonstrate
the technology before widely using it is most well
accepted there. Still, these are very low values con-

sidering that the most immediate next step toward
planetary-scale deployment for all of these technolo-
gies is demonstrating reliability, efficacy, affordability,
and safety. We see much higher counts for scale-
up, especially for ocean alkalinisation (40%), BECCS
(25%), EW (26%), and DACCS (21%). We note how-
ever that many of the mentions of scale-up did not
typically discuss a pathway or sequence of steps to
scale up the technology. Rather, they indicated that
scale up was necessary and often left it at that, at
least in the abstracts, which are what we read for
coding.

On the demand side, we see only BECCS with well
above average mentions of mechanisms that would
create incentives to adopt (‘demand pull’). Typically,
this involved modeling studies in which these tech-
nologies became widely deployed once a carbon price
was applied. Another frequent demand-pull mecha-
nism was the REDD(+) program relevant to AR. Very
few articles discussed niche markets. BECCS perhaps
is the notable exception in which a few articles dis-
cussed carbon utilization, e.g. for food or enhanced
oil recovery. Public acceptance was much more rep-
resented than niche markets. BECCS, and enhanced
weathering have above average mentions of public
acceptance. Technologies notable for very low counts
of public acceptance articles include DACCS (3%), AR
(3%), and BECCS (7%). We do not have a way to tell
whether these technologies have inherently fewer pub-
lic concerns or whether these concerns are simply being
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Figure 5. Trend in NETs publications by innovation stage and by technology. Each panel includes one innovation stage.

overlooked, perhaps because the technologies are at an
early stage.

3.3. Trends in research emphasis
In figure 5 we show the trend in NETs publications by
innovation stage. As in the table above, we see the gen-
eral emphasis on R&D publications and much smaller
counts for the other stages. Note that R&D has a larger
y-axis range than the others. In figure 5 we add infor-
mation on the technology categories as stacked colors
for each bar. In figure 8, we show the trend in publi-
cations within each NETs category. Each color in each
stacked bar is an innovation stage.

4. Review of innovation topics in the NETs
literature

Going beyond the scientometrics, we review the main
claims about innovation made in the articles. We
include some discussions of innovation stages that were
not positively coded as described in section 3, which
only reflect coding of titles and abstracts rather than the
full content of the article which this section includes.

4.1. Bioenergy carbon capture and storage (BECCS)
We found 106 articles focusing on innovation in
BECCS, which put it in the middle of the range of tech-
nologies we assessed. These articles covered a richer
set of innovation stages than did the other technolo-
gies. BECCS was more balanced between supply and
demand side topics than were the other technologies;
it had the highest portion of counts on the demand
side. One possibility is that this is due to their use
in IAMs, which connect demand, in the form of car-

bon prices, with deployment of BECCS. Compared to
other technologies, it also had a higher share of articles
that covered innovation stages other than R&D. It had
a higher share of articles on demonstration than any
other technology. It also had the highest on scale up,
demand pull, niche markets, and public acceptance.

Although BECCS included a smaller share of pure-
R&D articles, it still included many articles covering
the science on, for example, designing optimal feed-
stocks, increasing yields, capture efficiency, and how
to allow for multi-functional land use. Representative
examples include testing a gasification technology at
the sub-MW scale (van der Meijden et al 2010) and
comparing costs of various proposed plant configura-
tions (Schmidt et al 2010). However, since so few plants
and infrastructure have actually been built, projections
rely on models (Azar et al 2013, Kriegler et al 2013,
van Vuuren et al 2013, Klein et al 2014, Rose et al
2014) and in exceptional cases on expert elicitations
(Vaughan and Gough 2016). Along with AR, BECCS
is one of only two NETs to be regularly and specifi-
cally represented in IAMs, other than some individual
extensions (Popp et al 2011, Riahi et al 2015).

4.1.1. Demonstrations and scale up
Proving that BECCS plants are reliable and trusted
is a key open issue and an obstacle to widespread
adoption (van Alphen et al 2009). While only seven
articles discuss BECCS demonstration projects, this
is still relatively high compared to other technologies
and considering the very limited BECCS deployment to
date. Globally, less than a dozen small demonstrations
have been built (Kemper 2015) with more ambi-
tious projects having recently come online. One
important development is a full scale (1 Mt CO2 yr−1)
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BECCS demonstration plant online at Decatur, IL
USA (McCulloch 2016). More effort has involved
small pilot scale plants, at scales of hundreds of kWs
e.g. as described in Diego and Alonso (2016). A
larger example is a study in Inner Mongolia of a 24
MW BECCS plant using desert shrubs and storing
the CO2 in algae (Pang et al 2017). A helpful pre-
liminary assessment of these plants shows that their
performance is quite similar considering their diver-
sity (Bhave et al 2017). Kemper (2015) points out that
lack of demonstration creates significant uncertain-
ties about feasibility of large scale deployment. Gough
and Upham (2011) point to feedstock availability,
system integration, and CO2 transportation infrastruc-
ture as critical components of the scale-up challenge
for NETs.

4.1.2. Niche markets and demand
Turning to the demand side for BECCS, Bhave et al
(2017) make the point that early demonstration plants
struggle with weak or practically non-existent incen-
tives to generate negative emissions. Where CO2
emissions are priced, these markets are volatile and
uncertain (Iyer et al 2015), while incentives for CO2
capture are even more so. BECCS is unique among
NETs in that it produces energy thus also exposing
them to the vagaries of energy prices (MacDowell and
Fajardy 2017).

Early niche markets are identified as sugar and
paper processing facilities (Mollersten et al 2003) as
well as industrial and municipal waste (Sanna et al
2012). One of the more circumspect studies on the
important role of niche markets raises the issue of
whether fossil fuel niches, such as EOR, could lock in
fossil fuels rather than phase them out (Vergragt et al
2011).

For adoption in the longer term, Muratori et al
(2016) use an IAM to assess very widespread deploy-
ment of BECCS and point to their impact on food
prices, although they also indicate that such massive
diffusion assumes many barriers are overcome. Others
point to N2O emissions due to associated intensifica-
tion of agriculture (Popp et al 2011). Fridahl (2017)
uses a survey to show that while IAMs depend heav-
ily on BECCS for long-term decarbonization, BECCS
have featured very rarely in policy debates, raising
serious questions about the near-term incentives for
adoption. BECCS is unique among NETs in that it
produces useful energy in the form of electricity. How-
ever, some studies question whether the price of this
electricity can compete with renewables in a mostly
decarbonized system (MacDowell and Fajardy 2017).
And in IAMs BECCS are adopted due to rising carbon
prices not due to the value their electricity provides.
The ability of BECCS to alter their use of inputs and
capture rates provides a way to make them competi-
tive in changing markets for both carbon and power
(Sanchez and Kammen 2016). Modeling studies also
make the point that scaling up to meaningful levels

could take ‘decades’ (Azar et al 2013) or even ‘half
a century’ (Azar et al 2010). Beyond IAM studies, a
comprehensive review of impacts of BECCS on sustain-
able development finds positive economic effects but
negative social and environmental impacts (Robledo-
Abad et al 2017).

4.1.3. Public acceptance
BECCS’ share of its articles on public acceptance was
close to the NETs average. It is striking how many
of the articles we reviewed claim to take a compre-
hensive approach to BECCS but neglect to mention
public acceptance issues, a sentiment shared in the lit-
erature (Dowd et al 2015). Fridahl (2017) makes the
point that people are still very unfamiliar with BECCS
but that public acceptance of the technology will be
crucial. They claim it does have more likelihood of
acceptance than fossil CCS. Some argue that the agri-
cultural links in BECCS will make it more publicly
acceptable than CCS from fossil fuels (Wallquist et al
2012). Still, land use concerns (Searchinger et al 2008,
Wise et al 2009, Plevin et al 2010, Popp et al 2011) and
the essential tradeoff with food production, even with
large uncertainties about the precise impacts (Smith
et al 2013, Stevanovicı̌ et al 2016, Boysen et al 2017)
could be difficult to overcome (Robledo-Abad et al
2017). However, the transportation of massive quan-
tities of biomass may make it less acceptable than
CCS. Open issues in accounting of land-use change
emissions render the climate benefits of bioenergy
and BECCS highly uncertain (Creutzig et al 2012,
Plevin et al 2014); this uncertainty in climate bene-
fits translates directly into investment uncertainty into
BECCS as a NET. Regulation of stored CO2 and its
leakage is another key public acceptance issue (Boot-
Handford et al 2014). Gough et al (2014) find that
CO2 pipelines are perceived more favorably than gas
pipelines, although safety and risk concerns remain
paramount. Given these concerns, Rodriguez et al
(2017) discuss ways in which mitigation could be
enhanced to reduce the need for BECCS or alterna-
tively to use non-food feedstocks, such as algae (Sharp
et al 2017). Similarly, Boysen et al (2017) argue that
scale-up will be bounded, due to socially unaccept-
able levels of deforestation and food availability, so
that BECCS potential is limited to a role supporting
other mitigation options. Gough and Upham (2011)
suggest smaller scale BECCS will be more acceptable.
In an intriguing analysis using analogous technolo-
gies Buck (2016) describes some of the challenges to
scale up (such as volatile markets) as well as concerns
that could emerge with BECCS (such as unequal dis-
tribution of benefits) due not just to the extent of
deployment but also from its speed. Indeed many of
the concerns for CCS apply to BECCS (Wallquist et al
2012), as do those for generic bioenergy development,
including public perceptions of facility siting, local air
pollution, and feedstock transportation and handling
(Thornley et al 2009).
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4.2. Direct air carbon capture and sequestration
(DACCS)
More than any other NET, direct air capture arti-
cles primarily focus on the technology and supply-side
innovation topics. It has an above average share of arti-
cles on both demonstrations and scale up. It has the
lowest share of articles on demand side topics of any
NET. Indeed, in the companion paper that system-
atically reviewed costs and potentials, very little was
found on the removal potential of DACCS (Fuss et al
2018). Plausibly this reflects the current understanding
that economic costs rather than biophysical boundaries
or concerns will determine future success of DACCS
(Smith et al 2016).

R&D is currently the focus of innovation effort.
This emphasis aligns with a recent National Academies
report that recommended DACCS R&D ‘to minimize
energy and materials consumption, identify and quan-
tify risks, lower costs, anddevelop reliable sequestration
and monitoring.’ At the center of research activity, var-
ious chemicals for absorbing and adsorbing CO2 are
investigated (Choi et al 2011, Goeppert et al 2011,
Kong et al 2016). One area of R&D involves com-
paring the technical characteristics of various methods
with which to capture CO2 from ambient air, and
the associated mechanisms to maintain this process,
e.g. the energy used for pumping and compressing
(Lackner 2013), as well as chemical processes for regen-
erating solvents (Goeppert et al 2012, NRC 2015,
Sanz-Pérez et al 2016). Humidity is a concern for
DACCS technologies, and R&D involves addressing
humidity issues in ambient air (Darunte et al 2016).

4.2.1. Demonstrations and scale up
One reason for the focus on pure R&D is that the
technology is arguably at a nascent stage. For exam-
ple, Boot-Handford et al (2014) put DACCS in the
context of power plant CCS and mainly dismiss the
technology as ‘in its infancy’ and far more expensive
thatothermitigationoptions.GoingbeyondR&D, they
compare their results to a conventional alternative—
using power plant flue gas—and model the result at
full commercial scale, 1200 MW. However, we do see
some examples of demonstrations. Agee and Orton
(2016) discuss a laboratory-scale air capture method,
which achieves deposition of atmospheric CO2 via
refrigeration; they extend by discussing the advan-
tages (avoiding refrigeration needs) and challenges
(metal fatigue) of deploying this scheme in Antarc-
tica. Holmes et al (2013) present a prototype of a
cooling tower design, where air flows orthogonal to
a downward flowing hydroxide solution; they demon-
strate more than1000 hours of operation, validating the
cross-flow contactor design. Rau et al (2013) describe
experiments with absorption of CO2 via electrolyzed
solution but use most of the article to discuss the energy
requirements and costs at scale.

DACCS has an above average a share of articles
on scale-up. The possibilities for mass production of

air capture devices are a very attractive characteristic
(Lackner et al 2012). The costs of DACCS appear to
be a much more prominent topic than in other NETs.
For example, a subset of the comparisons mentioned
above involve cost estimates and financial compar-
isons (Socolow et al 2011, Sinha et al 2017). Other
work more explicitly focuses on scaling up DACCS
and includes estimates of cost reductions associated
with>10Gt of CO2 removal per year using component
cost estimates (Lackner 2009) as well as bottom-up
learning by doing and scale effects (Nemet and Brandt
2012). Comparisons of other estimates to mitigation
costs also shows the feasibility of DACCS at very large
deployment (Pielke 2009). Stolaroff et al (2008) pro-
vide an especially detailed bottom-up cost model of
a sodium hydroxide spray capture system deployed
at scale. Li et al (2015) consider integrating DACCS
with wind power. Comprehensive information on
costs and potentials can be found in (Fuss et al 2018).

4.2.2. Niche markets
Unlike other NETs, DACCS has received significant
attention from entrepreneurial firms. This activity may
be in part due to its main barrier being direct costs,
rather than side effects nor social concerns. Direct
implementation costs could be significantly reduced
with successful innovation. In addition, there is addi-
tional investment safety in that CO2 sequestered from
ambient air can be accurately and precisely accounted
for, in contrast to, for example, BECCS. Another driver
of entrepreneurial activity is the existence of robust
niche markets.

DACCS has been utilized routinely in spacecraft
and submarines to reduce the CO2 levels of ambient
air in closed systems. High indoor concentrations of
CO2, as prevalent in bed rooms, and classrooms, have
negative effects on performance, health, and human
health (Kotol et al 2014). DACCS applications focusing
on indoor air have the advantage of tangible bene-
fits for occupants, and can work at higher efficiency
due to up to 10 fold higher concentration compared
to ambient open air (Lee et al 2015), and thus could
hold promise as niche market.

Other startups can develop in niche markets that
are focused on utilizing CO2 for applications, such as
greenhouse fertilization, industrial use, or enhanced
oil recovery (Lackner et al 2012, Hou et al 2017,
Ishimoto et al 2017). Enhanced oil recovery and
microalgae cultivation are judged the most suitable
niche markets where also dilute CO2 is an adequate
feedstock, thus requiring less energy for separation
(Wilcox et al 2017). For example, a business case
for power-to-liquid synfuels has been proposed that
would make use of combined hybrid wind/PV, electrol-
ysis, and hydrogen-to-liquid, involving also scrubbing
CO2 from ambient air powered by excess heat from
electrolysis (Fasihi et al 2016). Carbon Engineering
is a company that has published substantial data on
important aspects of its technology (Holmes et al 2013,
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Holmes and Corless 2014). In addition, Climeworks
had as its original aim the production of synfuels,
relying on direct air capture. Yet, now, Climeworks
is running the first commercial DACCS plant using
the CO2 to fertilize plants in a greenhouse. Climeworks
alsoopenedaDACCSfacility incooperationwithReyk-
javik Energy in Iceland, making use of waste heat from
a neighboring thermal power plant to adsorb CO2 from
the filter, and injecting CO2 underground as carbon-
ated water, which then mineralizes in basaltic bedrock.
Its technology is based on amine-based nanocellulose
materials, but specifics have not been disclosed. These
startups can develop in niche markets that are focused
on utilizing CO2 for applications, such as greenhouse
fertilization, industrial use, or enhanced oil recovery
(Ishimoto et al 2017).

4.2.3. Demand and public acceptance
Although niche markets exist, our coding found that
DACCS has the lowest share of demand side articles
among the NETs. Those that do consider demand for
DACCS, primarily focus on carbon prices that would
be required to justify the costs of DACCS (Pielke
2009). An integrated assessment modeling study found
a primary impact of DACCS is that it extends the
use of oil under climate policy (Chen and Tavoni
2013). Another IAM study found that the availability of
DACCS can substitute for BECCS to achieve 1.5 ◦C tar-
gets (Marcucci et al 2017). Another source of demand,
potentially, comes from oil producers concerned
about the value of their reserves under climate policy
(Nemet and Brandt 2012).

Only a few articles grapple with public accep-
tance. Lackner and Brennan (2009) lay out a broad
set of possible public concerns and provide some ini-
tial assessments of their risks to the public. Leakage
of stored CO2 is one prominent concern, relevant
to other NETs as well (Vilarrasa and Carrera 2015,
van der Zwaan and Gerlagh 2016). DACCS is general
seen as more benign than CCS, as fossil fuels are not
involved. Cheng et al (2013) even develop a vision of
an acceptable use of DACCS within a ‘green town’ to
subsequently also improve public acceptance of CCS.

4.3. Biochar and soil carbon sequestration (SCS)
Soils on their own have the most articles of any
NETs, followed by AR. The count of biochar arti-
cles is below the median. This literature on soils and
biochar as NETs is large and mature, with several arti-
cles from the 1990s, though biochar is a more recent
topic than soil carbon sequestration, which has been
an active field for research for decades. Soils articles
were quite representative of NETs in their distribu-
tion across innovation stages. Soils were relatively low
on scale up and slightly lower than the average on
demand pull, but generally were close to the aver-
ages in other innovation categories. Biochar was low on
demonstrations and scale up compared to the average
NETs. It was also low on all demand side categories.

Due to biochar becoming an active topic of research
more recently, biochar articles were the least likely to
cover non-R&D stages of any technology; most work
on biochar is still scientific.

Recurring R&D topics in prominent articles
include: the amount of soil carbon retained by agricul-
tural practices (Piccoli et al 2016), the corresponding
amount lost (Sanderman et al 2017), and the impacts of
tillage (Sohi et al 2010). Effects on carbon content and
the overall health of soil from application of biochar is
a large focus area (Fang et al 2016, Novak et al 2016,
Pandian et al 2016), including for example N content
(Prommer et al 2014). Temperature for pyrolysis is
an important topic among biochar articles (Sohi et al
2010). Assessing the multiple benefits of biochar pro-
ductions and use, e.g. via sugar cane is another research
direction (Quirk et al 2012).

For R&D, two helpful reviews (Olson 2013, Olson
et al 2014) establish research design choices that would
make these experiments most useful for the next
stage of demonstration. There are developing estimates
of global resource potentials for soil carbon storage
(Mishra et al 2012, Paustian et al 2016, Smith 2016)
(Mishra et al 2012) as well as life cycle analysis of
greenhouse gas impacts from various cropping systems
(Cooper et al 2011).

The maturity of work onbiochar and soils has led to
a set of strong comprehensive review articles, includ-
ing Lal (2005), Lal et al (2007), Woolf et al (2010),
Paustian et al (2016), and more recently Woolf et al
(2017).

4.3.1. Demonstrations and scale up
A recurring assertion in the soils literature is the
need for large and long term demonstrations (Ringius
2002). Only one such study exists, which the authors
claim is unique (Vochozka et al 2016). Other exper-
iments have been relatively large (Piccoli et al 2016)
and long term (Gutzloe et al 2014, Triberti et al
2016) and therefore approach a scale sufficient for
demonstrations to generate new knowledge. Some use
large scale assessments over long periods to quantify
potentials (Liu et al 2014). Large and long term demon-
strations seem most convincing as models for later
adoption (Six et al 2004, Diacono and Montemurro
2010). Promisingly, unlike other NETs very long term
(i.e. several decades) field experiments are common
for soil carbon management (Hofmockel et al 2007,
Smith et al 2012).

For scale up, some studies use field experiments
to model large scale applications of techniques such
as conservation tillage (Jiang et al 2014, Novak et al
2016). Global potentials have been estimated (Paus-
tian et al 2016, Smith 2016). One focus has been the
challenge of moving from dispersed land use decisions
to managed and coordinated ones to enable scale up
(Valujeva et al 2016). For biochar, financing mecha-
nisms are also covered as a means to support scale up
(Whitman and Lehmann 2009).
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4.3.2. Demand and public acceptance
Even though the overall share of studies on demand is
quite low for soils and especially biochar, several articles
make the point that creating incentives for farmers to
adopt is central to policy design (Dilling and Failey
2013, Stavi and Lal 2013). Estimating and reducing
the costs of biochar are put forth as a key way to spur
demand for it (Spokas et al 2012, Dickinson et al 2015),
in particular, the costs of pyrolysis (Meyer et al 2011).

A key practical issue is how the accounting would
work (Sanderman and Baldock 2010, Downie et al
2014). One model is a carbon credit scheme in Mon-
tana (Watts et al2011). A small number of articles focus
on the policy aspects that would affect demand (Smith
et al 2007). Less directly, we often see that demand is
implied in the context of discussions of land and soil
management (Valujeva et al 2016).

Given their centrality as adopters, articles dis-
cussing public acceptance generally focus on farmers
rather than the more general population (Olsson and
Jerneck 2010, Jørgensen and Termansen2016). Beyond
farmers, a focus is on stakeholders and especially
how the world poor stand to benefit (Stringer et al
2012). One notable study actually surveyed people on
their perceptions of its risks and benefits (Glenk and
Colombo 2011). Quite a few studies make the point
that interdisciplinary research from many disciplines
including social sciences is needed, even if such work
isn’t conducted by themselves (Lal 2008). One way the
considerable transactions costs might be overcome is
through international coordination. For example, the
4p1000 Initiative (www.4p1000.org) creates incentives
for farmers to increase C to improve their soil qual-
ity (with C removal as a co-benefit) with a goal of
increasing soil carbon content by 0.4% per year.

4.4. Ocean fertilization (OF)
The share of ocean fertilization articles on demonstra-
tions and scale up was close to the NETs average. There
were considerably fewer articles on the demand side,
including none on niche markets. Scale up was the
most prominent non-pure R&D topic. One observa-
tion is that the early papers (early 2000s) seem much
more focusedonscaleup (bothoptimistically and skep-
tically) than later ones, which tend to be more focused
on R&D.

4.4.1. Demonstrations and scale up
A number of experiments have taken place, some of
which are substantially large enough to be considered
demonstrations. For example, Boyd and Bressac (2016)
describes 12 ‘mesoscale’ iron fertilizations conducted
in the GEOTRACES global survey. Others include
an early small experiment, almost a demonstration
(Bakker et al 2001) and an early mesoscale experiment
(Boyd et al 2000). These ‘experiments’ in the Southern
Ocean are also close to demonstrations (Smetacek and
Naqvi 2008). Two articles take a distinctly innovation-
oriented perspective, one stressing that we need to learn

about it to scale up (Lampitt et al 2008) and another
describing research design for a set of demonstration
projects of increasing scale (Watson et al 2008).

Even though 15% of the articles discuss scale up,
few explicitly address the process of getting from small
experiments and demonstrations to large scale deploy-
ment. Exceptions include an early article including
some discussion of the progression (Benemann 1992),
as well as upscaling from experiments to global scale
(Aumont and Bopp 2006). Another focuses on side
effects but in doing so simulates growth of of over
time (Oschlies et al 2010). We also see articles on
the costs of scale up (Jones 2014) and also a focus
on governance associated with scale up (Rabitz 2016).
A more typical topic is to report what the impacts of
very large deployment would be (Cao and Caldeira
2010, Keller et al 2014, Williamson et al 2012) and
including for example, a model that considers tera-
grams of iron additions (Hauck et al 2016). A cluster
of articles from a decade ago considered implementa-
tion issues, such as the legal framework necessary for
scale up (Freestone and Rayfuse 2008), modeling large
scale deployment (Zeebe and Archer 2005), and the
need to involve businesses, not just scientists (Leinen
2008). It is interesting that these quite practically
oriented articles are a decade or more old.

4.4.2. Demand and public acceptance
Discussion of the demand for ocean fertilization is
notably lacking. We do see articles on how carbon mar-
kets could lead to demand for OF (Rickels et al 2012),
accounting and incentives (Rickels et al 2010) and con-
sideration of CDM applied to OF (Bertram 2010). We
found no articles that we would classify as discussing
niche markets for ocean fertilization.

The share of public acceptance articles is above
the NETs average. Some work is not explicit about
public acceptance, but does try to anticipate issues,
for example recommending waiting until we fig-
ure out downstream effects of OF and unintended
consequences (Cullen and Boyd 2008). Some cover
governance issues (Williamson et al 2012), legal sta-
tus (Bertram 2010), and the Law of the Sea (Freestone
and Rayfuse 2008). Others discuss the social implica-
tions for people making a living from coastal areas
(Mayo-Ramsay 2010). Work acknowledges that the
public debate is intensifying—we don’t know enough
to drop it now (Strong et al 2009). One quite risk averse
perspective claims that uncertainty about future state
after deploying OF makes it unacceptable (Hale and
Dilling 2011). Others also cover the public acceptance
of experiments (Strong et al 2009) and why these tend
to be unpopular (Smetacek and Naqvi 2008).

4.5. Afforestation and reforestation (AR)
Forests were second only to soils in the counts of arti-
cles. AR is a mature ‘technology’ (using our broad
definition), it already exists at scale, and the potential
for storing gigatonnes of carbon has been recognized
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for decades (Canadell and Raupach 2008, Jurgensen
et al 2014). The share of AR articles is close to
the average in all innovation categories. It is slightly
higher in scale up and demand pull, and quite a bit
lower in public acceptance. R&D articles include many
reporting experiments on the sequestration potential
of forests, at various spatial scales and time peri-
ods. In our initial filtering of articles, we discovered
hundreds of AR studies that focus on site or species-
specific carbon sequestration rates. These studies are
not considered or reviewed here as their specificity
does not allow for a straightforward assessment of
NET potential or scale up possibilities. Nonethe-
less, the AR option should be considered against a
backdrop of substantial empirical research into the
basic characteristics and growth patterns of forests
globally.

4.5.1. Demonstrations and scale up
We identified 62 AR articles that address scale up,
however with widely differing interpretations of the
ultimate scale needed. Articles we coded as demonstra-
tions include: Returning Farmland to Forest Program
in China (Zinda et al 2017), Forest Restoration Exper-
imental Project (Gong et al 2013), and a project in
Guangdong, China (Zhou et al 2008). A different type
of demonstration included looking at the financial out-
come of a CDM project after 6 years (Katircioglu et al
2016).

In contrast to other NETs, in many articles there
is an implicit premise that scale could be achieved
if societies wanted to and thus the research frontier
is about side effects and potential size. For example,
some articles discuss implications of scale up but not
with a focus on how to accomplish this, even from
quite a while ago (Alpert et al 1992, Shvidenko et al
1997). Others consider the scale-up process itself more
analytically (Zhang et al 2015) (Caughlin et al 2016),
even from earlier (Canadell and Raupach 2008) and
even very early on in the AR literature (Myers and
Goreau 1991). Some of these articles include experi-
ments that explicitly try to assess the potential for scale
up; a small portion of these are demonstrations. Several
projects are already quite large, including government-
led efforts at reforestation, typically for purposes other
than carbon storage, and projects assessing AR out-
comes at the scale of watersheds (Cunningham et al
2015).

A recurring theme is the identification of barri-
ers to scale up, and overcoming them (Vadas et al
2007), often under the rubric of implementation issues
(Polglase et al 2013). For example we see a focus on
measuring monitoring and contracting (van Kooten
and Johnston 2016). There is an ongoing stream of
research into the costs of AR, either in terms of direct
establishment costs (Summers et al 2015), opportu-
nity costs (Nijnik et al 2013), or land-use switching
under certain carbon price assumptions (Monge et al
2016). Already a decade ago a review study compiled

the preceding 12 years of cost studies (Richards and
Stokes 2004).

4.5.2. Demand and public acceptance
Discussions of the demand for AR typically focus on
carbon markets (Adams and Turner 2012, Carwar-
dine et al 2015, Liu and Wang 2016). Demand for
ecosystem services can also lead to AR (Meyfroidt and
Lambin 2011), especially with supportive policies (Liu
et al 2008). For example reduced salinity is one benefit
(Harper et al 2012). A consequence of these multiple
sources of demand is how to optimize across these,
especially when AR and soils are considered jointly
(Valujeva et al 2016). A more precise conception of
demand arises in more spatially explicit estimates of
willingness to pay for AR (Sagebiel et al 2017).

An important agent in AR studies are farmers.
For example one can see small scale family forests as
a niche (Charnley et al 2010). Looking into farmers’
preferences seems crucial to adoption, yet unusual in
the literature, with exceptions (Lienhoop and Brouwer
2015). We see some emphasis on the role of farmers’
negotiating power in these markets. A big barriers is
transactions costs of lots of small scale transactions
(van Kooten et al 2002).

The share of articles on public acceptance was low
compared to other NETs. As with soil carbon seques-
tration and biochar, discussion is typically focused on
private landholders (Schirmer and Bull 2014, Trevisan
et al 2016), rarely going into realm of the public and
their attitudes, beyond occasional economic incen-
tives. AR directly impacts on the visual features of
a landscape, so it is surprising to see such a lack of
engagement between sequestration studies and the rich
literature on landscape aesthetics and social/cultural
expectations of ‘nature’ (Hunziker 1995, Daniel 2001).
We do see some critical discussions of the impacts
of ‘carbon farming’ (Funk et al 2014), water use
(Jackson et al 2005), nutrient cycling (Smith and
Torn 2013), and the need for stakeholder engagement
(Atela et al 2016). A survey on attitudes toward AR
was a notable exception to the dearth in this area
(Nijnik and Halder 2013), including also a survey by
Schirmer and Bull (2014).

4.6. Enhanced weathering (EW)
After ocean alkalination, EW was the NET with the
lowest number of articles. Within EW, shares were rel-
atively close to NETs averages; above average share of
articles were on scale up and public acceptance.

4.6.1. Demonstrations and scale up
In response to the minimal body of work, Hart-
mann et al (2013) argue that there is a ‘need for
specific experiments’. They propose a cascade of exper-
iments bridging the scales from millimeters to meters
to 100s of meters as a means to scale up. Chemi-
cal engineering studies are particularly well positioned
to consider the issues and opportunities of scale up
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(Morales-Florez et al 2011, Hall et al 2014). Com-
puter models are used to estimate potentials (Taylor
et al 2016) which in a very general way simulates
scale up, even if admittedly ‘idealized’ and missing
important processes like the biological pump. Stud-
ies also draw on data sets of surface rock types to assess
carbon removal potentials if kinetics are understood
(Moosdorf et al 2014, Strefler et al 2018). The speed
of weathering is a critical issue for scale up. It has
been studied using empirical data on natural systems
(Li et al 2008, Power et al 2009, Ollivier et al 2010),
in particular the effect of temperature (Li et al 2016),
as well as using laboratory-scale experiments (Renforth
andManning2011). Inaddition, the applied rockmate-
rial has fresh surfaces and fines from the production
process, which will lead to enhanced kinetics, but is still
not reliably quantifiable for upscaling. This can be seen
in field studies if comparing kinetics of pyroclastics,
remains from volcanism with fine grains, with other
rocks (Hartmann 2009).

Interactions of minerals with soils and the biol-
ogy is a key research area and important to scale up
(Hartmann et al 2013, Manning and Renforth 2013,
Taylor et al 2017, Beerling et al 2018). An early paper
included a lab scale experiment showing that waste
concrete and algae could be used to fix CO2 as calcium
carbonate (Takano and Matsunaga 1995). Use of waste
materials as a source of minerals is included in more
recent work as well (Sanna et al 2012).

As EW also releases geogenic nutrients it will affect
biomass production, and can in addition to inorganic
CO2 sequestration be used to enhance biomass pro-
duction (Hartmann et al 2013). However, this part has
not been studied for upscaling so far and would be
important to consider in the simultaneous use of AR
and EW or BECCS and EW over large areas, specifically
in areas with low geogenic nutrient contents in soils and
bedrock.

4.6.2. Demand and public acceptance
We found only a small number of articles that discussed
the demand side of EW; one on demand pull and five
on public acceptance. As with other NETs, much of
demand will come from carbon pricing; since EW costs
are anticipated to be large they will require a substan-
tial carbon price (Hartmann and Kempe 2008, Taylor
et al 2016). A separate source of demand is the appli-
cation of EW to increase agricultural yields, specifically
in areas with depleted soils (van Straaten 2002, Hart-
mann et al 2013)—however, this is not currently a
widespread practice.

A survey of public perceptions of geo-engineering
technologies found that EW scored in the mid-range
in terms of acceptability; in part because it is con-
sidered ‘indistinct’ relative to other GE technologies,
public response was expected to be muted (Wright
et al 2014). Specific public concerns mentioned are
health effects of atmospheric suspension of pulver-
ized rock (Taylor et al 2016) although there is little

analysis to date of the risks of each, which depend also
on the chosen application procedures. An important
advantage of EW in the public domain is that rather
than imposing competition for land it could enhance
productivity (Strefler et al 2018), a major issue for
public acceptance of BECCS and AR.

4.7. Papers that consider innovation topics across
multiple NETs
One way NETs are combined is through comparisons
of their deployment potentials to their risks. For exam-
ple, Field and Mach (2017) argue that the risks are
high even if potentials are large, thus advocating a
focus on research, limited expectations, and a renewed
emphasis onmitigation. Another group compares costs
and potentials (Johnson et al 2017), as well as storage
capacity (Scott et al 2015). Some policy related topics
also involve multiple NETs. For example, Coffman and
Lockley (2017) consider, but ultimately reject as infea-
sible, a carbon removal futures market to account for
the delay in deployment. And in terms of actual pol-
icy, the £8.6 m UK Greenhouse Gas Removal Research
Programme aims to test several approaches, although
at that scale these would be at best pilot and proto-
type experiments rather than demonstrations in the
sense we use it here. Ying and Yuan (2017) provide
a Chinese perspective on designing policy for NETs.
Other papers are less specific on the removal technique
used but raise upscaling issues, such as game theo-
retic incentives (Sandler 2017). In the US, the National
Academies is working on a scale up oriented report on
NETs (National Academies 2017).

5. Conclusions

Our assessment of the extant literature on innova-
tion and scale up in NETs shows a growing literature
across all NETs technologies. The literature on emerg-
ing mitigation technologies emphasizes diversification
to manage risk (Anadon et al 2017); that many NETs
are at early stages in their development makes such an
approach even more appropriate. The heterogeneity of
these technologies, especially in their limitations and
adverse side effects, strongly suggests a portfolio-based
risk management approach to scaling up NETs, rather
than a singular focus.

An important insight from the reviews in (Minx
et al 2018) and (Fuss et al 2018), as well as in the IAM
results included in this paper, is that even though IAM
model results typically have a large role for NETs to
play in the second half of the 21st-century, there is
still urgency in developing them. This urgency derives
in part from the generally long time periods required
for the diffusion of technologies to attain widespread
adoption, as described in section 2 of this review. That
these technologies need to be removing CO2 at the
rate of gigatonnes-per-year (Fuss et al 2018) implies
truly massive deployment, and consequently long
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Figure 6. The growing need to scale up NETs from IAM results (A. upper) and the R&D-focused literature on NETs (B.lower). We
see a dearth of work on the areas that will be crucial to the widespread deployment of NETs, notably in demonstration projects, niche
markets, demand pull mechanisms, and public acceptance.

diffusion times. Thus, the extent of long term deploy-
ment depends to a great extent on a variety of decisions
in the coming 10–20 years, not just in the second half
of the 21st century (figure 6(a)). The IAM results also
show that delays in mitigation are increasingly locking
us into NETs dependent pathways for achieving the
climate goals. In fact, if current NDCs are good indi-
cations of 2030 emission levels, targeting 2 ◦C from
2030 would require a similar net emissions pathway to
targeting 1.5 ◦C today; that is, a NETs-intensive path-
way. Yet, none of the NDCs contains plans to develop
negative emissions.

The primary insight from the scientometric anal-
ysis is the relative preponderance of articles on the
supply of NETs and the dearth of articles on demand
for NETs (figure 6(b)). The literature on NETs is best
described as still in the R&D phase. The subsequent
stages of the innovation process are represented in
this literature but are much less prevalent. Only one
out of six NETs articles focused on topics related to
the ‘demand’ for that technology. BECCS and ocean
alkalization had the highest ratio on the demand
side, about 1/3. Air capture had strikingly low counts
of articles addressing demand for it. The language used
reflects this supply-side focus: NETs are typically dis-
cussed as being ‘deployed’ rather than ‘adopted.’ Yet
the reality is that for many NETs the array of stake-
holders involved in adoption are manifold. Meeting
median removal potentials for BECCS would involve

bringing on-line hundreds of Decatur-scale CCS
facilities each year; DACCS and others would involve
transporting CO2 to thousands of storage locations;
soils and biochar would involve the activities of mil-
lions of farmers. A focus on ‘deploying’ NETs ignores
the preferences and attidudes of these actors as well as
the communities, in which they operate. NETs thus
have much to learn from successfully diffused tech-
nologies, for which appealing to heterogeneous users,
managing policy risk, as well as understanding and
addressing public concerns are all crucial elements of
the technology adoption process. Who wants them, for
what reason; who will adopt them; and how will various
publics respond to them are crucial questions, but ones
which the literature has only marginally addressed. It
needs to catch up for it to be relevant.

Taking the IAM results and the innovation scien-
tometrics together in figure 6, we see an urgency to
develop NETs and yet the research directions as evi-
denced in our scientometrics do not seem to anticipate
the urgency of the challenge and the need to provide
insights on the upscaling challenges to come. If NETs
are tobedeployedat the levelsneeded tomeet1.5◦Cand
2 ◦C targets, then important post-R&D issues will need
to be addressed, for example including early deploy-
ment, niche markets, scale-up, demand, and public
acceptance. For the NETs literature to be relevant and
contribute to the opportunities provided by NETs, it
will need to grow its efforts in post-R&D topics.
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A. Supporting information

This section provides additional detail on the methods
used to assign NETs articles to innovation categories,
as well as additional descriptions of the results.

A1. Search string applied to web of science
We developed the innovation search queries as
described in the main text. We applied the result-
ing Boolean search strings to the Web of Science. We
applied one string for each innovation stage.

1. Research and development query:
TS = (research or develop∗ OR ‘R&D’ OR lab∗ OR
‘technology push’ OR experiment∗)

2. Demonstrations query:
TS = ((demonstrat∗ NOT (‘we demonstrate∗’ OR
‘study demonstrate∗’ OR ‘result∗ demonstrate∗’)
OR pilot∗OR ‘non-laboratory’ OR ‘Valley of Death’
OR ‘field trial∗‘ OR prototype∗))

3. Scale-up query:
TS = (scal∗ OR upscal∗ OR ‘unit size’ OR
commercial∗ OR deploy∗ OR gigaton∗ OR Gt)

4. Demand pull query:
TS = ((demand NOT (‘N demand’ OR ‘demand for
N’)) OR consumer∗OR learningOR experience OR
diffuse∗ OR deploy∗ OR REDD OR ‘carbon pric’
OR ‘carbon tax’ OR ‘climate policy’ OR ‘climate
change policy’ OR (climate NEAR regulation) OR
((‘1.5 ◦C’ OR ‘1.5 degrees C’) NEAR/3 (warming
OR temperature)))

5. Niche markets query:
TS = (niche OR ‘willingness to pay’ OR (utilize∗
NOT (‘we utilize’ OR ‘study utilize∗’ OR ‘project
utilize∗’ OR ‘was utilized’ or ‘were utilized’ OR ‘is
utilized’ OR ‘are utilized’)) OR (utiliz∗ AND (early
NEAR/3 market OR early NEAR/3 application or
early NEAR/3 use)))

6. Public acceptance query:
TS = (accept∗ OR opinion∗ OR attitude∗ OR
‘public support" OR oppos∗ OR perceive∗ OR
perception OR adopt OR demand OR voice OR
consensus OR educat∗ OR communicat∗ OR peo-
ple OR residents OR individuals OR members
OR customer∗ OR public OR popular OR soc∗
OR backyard OR (communit∗ NOT ‘bacterial
communit∗" NOT ‘microbial communit∗" NOT
phytoplankton communit∗) OR home OR popula-
tion OR officials OR advoca∗OR ethic∗OR moral∗
OR legitima∗ OR safe∗ OR justif∗ OR democra∗
OR (survey AND (respondent∗ OR participat∗ OR
express OR ∗agree)) OR food)

7. Innovation general query:
This ‘catch-all’ search query is intended to include
relevant articles not otherwise identified by our
stage-specific queries.

TS = ((innovat∗ OR ‘technological change’ OR
‘technical change’ ORlearn∗ORinvent∗ORknowl-
edge OR appropr∗ OR understand∗ OR creat∗
OR experience∗ OR process∗ OR information OR
differen∗) OR (invest∗ OR fund∗ OR finance∗ OR
cost∗ OR spend∗ OR venture OR expenditure∗ OR
econ∗ OR produc∗ OR price OR cost OR supply
OR efficien∗ OR demand OR appl∗ OR design)
OR (global OR diffuse∗ OR large OR scale OR
manyORquantit∗)OR(publicORprivateORbusi-
ness OR corporate OR institut∗) OR (‘technological
maturity’ OR ‘enhance knowledge’ OR phase or
stage) OR (effort∗ OR future OR role OR level
OR basic OR approach OR department or need∗
or industr∗ or structure or resource∗ or activit∗
or trust or firm∗ or change or business or capital
or agency or incentive∗ or benefi∗ or spillover∗ or
challeng∗ or assess∗ or approach∗ or advanc∗ or
early or strategy∗ or project or compet∗ or uncer-
tainty or trade∗ or mechanism or local or value or
transition or potential or outcome or hub or good
or coordinat∗ or build∗ or tax decision or compan∗
or mission or lab∗ or evidence or commercial or
challenge or budget or success∗ or pull or adopt∗
or produce∗ or own∗ or network∗ or manage∗ or
implement∗orgoal or effect∗or stage∗orportfolio∗
or enterpris∗ or depreciate∗ or capacity or better or
best or result∗ or actors or ‘private sector’ or ‘public
sector’ or phase or concept or ‘technology push’ or
success))

A2. Coding rubric used to manually code abstracts
The search string above provided a set of articles from
which we manually coded each article into innovation
categories. Two researchers coded each article as rele-
vant to the innovation category for which it had been
selected. The researchers used the following coding
rubric as further guidance, which is meant to pro-
vide more context to the Boolean search strings for
each innovation category. In contrast to a Boolean
these words are meant to convey meaning so that the
researchers would not use these terms strictly, but could
for example use synonyms or related ideas. The terms
below are to be used in addition to the Boolean terms,
not to replace them.

1. R&D: model, laboratory, experiment, investigate,
demonstrate, field trial.Articles that are not assigned
to categories 2–6 are coded as R&D.

2. Demonstrations: pilots, prototypes, larger scale,
long term. Do not include if: laboratory, experi-
ment, or if any of the triggering words in previous
list are mentioned in passing or for future research
rather than a central part of the study.

3. Scale up: economies of scale, global, gigatonnes,
increasing unit size, costs, increasing manufactur-
ing capacity, integrated assessment, expansion. Do
not include if any of the triggering words in previous
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Figure 7. Trend in NETs publications by innovation stage.

Table 3. Share of articles in each technology and innovation stages that manual reading classified as ‘relevant’ to that technology and
innovation stage.

Supply-side categories Demand-side categories Total

Technology RD Demos Scaleup Demand pull Niche markets Public accept Demand side

Afforestation/reforestation 100 69 78 57 33 8 68
BECCS 100 41 65 55 100 24 63
Biochar 100 11 71 44 100 23 67
Direct air capture 100 29 71 53 67 25 73
Enhanced weathering 100 50 78 100 0 63 82
Ocean alkalinisation 100 60 77 69 100 39 77
Ocean fertilisation 100 0 100 100 0 33 79
Soil carbon sequestration 100 57 62 56 0 58 81
NETs - General 100 31 65 58 0 15 61

list are mentioned in passing or for future research
rather than a central part of the study.

4. Demand pull: markets, carbon tax, policy, prices,
1.5 or 2 degrees, adoption. Do not include if
only deployment, or if any of the triggering words
in previous list are mentioned in passing or for
future research rather than a central part of the
study.

5. Niche markets: willingness to pay, carbon uti-
lization, enhanced oil recovery, co-benefit, early
adopters.

6. Public acceptance: acceptance, public, governance,
ecosystems.

A3. Additional analyses
We include descriptive statistic that show the result of
our manual coding of the articles identified in each cat-
egory. For example, in the cell BECCS/Demos, the 41%
indicates that of the BECCS articles that our Boolean
search identified as ‘demonstrations’, the researchers
coded 41% of them as relevant using the manual coding
rubric.
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Figure 8. Trend in NETs publications by technology and innovation stage. Each panel includes one technology.

In figure 7 we show the trend in articles for each
innovation stage. In figure 8 we show the trend in
articles for each technology.

A4. Additional scenario data
In this section, we include additional scenario informa-
tion on (i) the costs of and investments in BECCS and
other mitigation technologies, (ii) the role of BECCS
and other technologies in climate change mitigation
and (iii) the geographical distribution of BECCS.

Costs and investments in BECCS and other mitigation
technologies
Technology costs are important factors that drive sce-
nario results. In figure 9 we show the total costs of
various power plant technologies that are required
to be deployed annually between 2020 and 2050 to
keep global warming below 2 ◦C. Nuclear costs dom-
inate other technology costs between 2020 and 2030.

However asothermitigation technologies get deployed,
this effect diminishes gradually. In 2050, renewables
(i.e. solar and wind) constitute the major part of
global energy system costs (US$200–1200 per year).
In comparison the costs of BECCS are moderate
(range: US$0–850 per year, median: US$200 per year).
Importantly there is a great variability across results.
This can be explained by differences in sce-
nario and model assumptions as well as model
structures.

Another important factor to consider is investment
in technologies. Investments are a share of the total
costs. Likewise we display the investments in various
power plant technologies required annually between
2020 and 2050 to keep global warming below 2 ◦C.
Again,most investmentsgo intorenewableenergy tech-
nologies (US$ 250–1500 per year in 2050). Investments
in nuclear and BECCS technologies remain moder-
ate (US$ 100–300 per year and US$ 0–400 per year
in 2050, respectively).
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Figure 9. Annual total costs of various power plant technologies in a 2 ◦C scenario with immediate action. Boxplots show the statisical
variability across models in the LIMITS-450 scenario. They are provided for each technology in 2020, 2030, 2040 and 2050. For each
boxplot, the middle thick black bar represents the median. The lower and upper bounds of colored rectangles correspond to the first
and third quartiles (the 25th and 75th percentiles). The whiskers extend in both directions to the minimum and maximum values, but
no more than 1.5 time the inter-quantile range. Data beyond the end of the whiskers are defined as outliers and are shown as black
dots. Data sources: LIMITS (Kriegler et al 2013).

●

● ●

●

●

●

●

●

●

●

●

●

2020 2030 2040 2050

0

500

1000

1500

In
ve
st
m
en
ts

 [
b
ill
io
n

 U
S
$2
00
5/
yr
]

Power plant type
BECCS

Biomass without CCS

Fossil fuels

Nuclear

Non−bio. renewables

Storage

Trans. and distrib.
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statisical variability across models in the LIMITS-450 scenario. They are provided for each technology in 2020, 2030, 2040 and 2050.
For each boxplot, the middle thick black bar represents the median. The lower and upper bounds of colored rectangles correspond to
the first and third quartiles (the 25th and 75th percentiles). The whiskers extend in both directions to the minimum and maximum
values, but no more than 1.5 time the inter-quantile range. Data beyond the end of the whiskers are defined as outliers and are shown
as black dots. ‘Non-bio. renewables’ stand for non-biomass renewables whereas ‘Trans. And distrib.’ stands for transmission and
distribution. Data sources: LIMITS (Kriegler et al 2013).
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beyond the end of the whiskers are defined as outliers and are shown as black dots. Data sources: AMPERE (Kriegler et al 2015),
LIMITS (Kriegler et al 2013), RoSE (Kriegler et al 2016) and data from Luderer et al (2013) and Rogelj et al (2014).

Role of BECCS and other technologies in climate change
mitigation
The role of various mitigation technologies can be
understood by looking at the energy contribution from
individual technologies to the global energy system.
In figure 11, we show the global secondary energy
production split by technologies that is required annu-
ally to keep global warming below 2 ◦C with a 66%
chance. Overall all technologies play a role in mitigating
CO2 emissions. For electricity generation, renewables
seem to be the most important technologies (hence
the large investments shown in figure 10). Nuclear
and gas power plants with CCS also play an impor-
tant role. Over this time frame, liquids fuels are mostly
produced with fossil technologies with CCS. BECCS
does not play a large role in energy production. This is
because the role of BECCS power plants is mainly to
remove CO2 from the atmosphere and not to generate
electricity.

Geographical distribution of BECCS
Cumulative amounts of negative emissions from
BECCS in various world regions over the period 2010–
2050 are given in table 4 for the 2 ◦C climate goal (66%
chance of keeping the increase in global mean temper-
ature below 2 ◦C). These data provide insight about the
geographical distribution of BECCS. Although results
are subject to great variability, they seem to indicate
that Latin America and the USA have a great negative
CO2 emission potential. Japan has the lowest potential.

Table 4. Geographical distribution of cumulative sequestered carbon
by BECCS over the period 2010–2100 Units are Gt(CO2). Data
sources: AMPERE (Kriegler et al 2015), LIMITS (Kriegler et al 2013),
RoSE (Kriegler et al 2016) and data from Luderer et al (2013) and
Rogelj et al (2014).

World

region/Country

Minimum Median Maximum Number of
scenarios

Africa 0 55 147 49

China 0 66 208 128

Europe 0 44 99 130

Former Soviet
Union

0 46 159 130

India 0 38 149 130

Japan 0 6 22 96

Latin America 0 108 191 115

Middle East 0 15 122 49

Pacific OECD 9 18 44 12

Southeast Asia 0 45 63 49

USA 0 70 136 130
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